Article 8216

Title of the article

DETERMINATION OF SnO2 THIN OPTICALLY TRANSPARENT
FILMS’ THICKNESS BY THE ENVELOPE METHOD

Authors

Kondrashin Vladislav Igorevich, Postgraduate student, Penza State University (40 Krasnaya street, Penza, Russia), vlad_kondrashin@mail.ru

Index UDK

535.243

DOI

10.21685/2072-3059-2016-2-8

Abstract

Background. Transparent conductive coatings based on thin films of metal oxides are widely used in various optoelectronic devices. Films’ thickness plays an important role in formation of their electrical and optical properties, therefore this parameter must be measured constantly. However, measuring thickness of thin transparent films using traditional methods is difficult to complete due to certain restrictions. This problem is solved by the envelope method, which consists in analysis of interference extremes distribution in transmission spectra of thin films. Thepurpose of the work is to determine thickness of tin dioxide films by the envelope method, its accuracy and application conditions.
Materials and methods. Tin dioxide thin films were obtained by spray pyrolysis on glass and silicon substrates. The transmission spectra of films were measured in the wavelength λ = (320–1000) nm. The paper presents a technique for determining transparent films thickness by the envelope method. The thickness was also measured using electron microscopy and ellipsometry. The comparative analysis of obtained results was performed.
Results. The comparative analysis has shown that the accuracy of the envelope method reduces with a decreasing film thickness. Disadvantages of the envelope method and conditions of its application are revealed as a result of this work.
Conclusions. The envelope method should be applied only to transmission spectra, demonstrating the interference fringes, provided that a thin film has weakabsorption of electromagnetic radiation and a substrate is fully transparent.

Key words

transparent films, spray pyrolysis, thickness, envelope method, transmission spectra, interference extremes, envelope curves, interpolation.

Download PDF
References

1. Kondrashin V. I., Rybakova N. O., Raksha S. V., Shamin A. A., Nikolaev K. O. Molodoy uchenyy [The young scientist]. 2015, no. 13, pp. 128−132.
2. Liu H., Avrutin V., Izyumskaya N., Özgür Ü. Superlattices Microstruct. 2010, vol. 48, no. 5, pp. 458–484.
3. Tatar D., Düzgün B. Pramana – J. Phys. 2012, vol. 79, no. 1, pp. 137–150.
4. Babar A. R., Shinde S. S., Moholkar A. V., Bhosale C. H., Kim J. H., Rajpure K. Y. Journal of Semiconductors. 2011, vol. 32, no. 5, pp. 053001-1 – 053001-8.
5. Remez L. M. Molodezhnyy nauchno-tekhnicheskiy vestnik. MGTU im. N. E. Baumana [Youth scientific technical bulletin. Bauman Moscow State Technical University]. 2014, no. 5. Available at: http://sntbul.bmstu.ru/doc/ 721985.html
6. Zaytseva E. A., Zakirova R. M., Krylov P. N., Lebedev K. S., Fedotova I. V. Vestnik Udmurtskogo universiteta [Bulletin of Udmurtia University]. 2012, iss. 2, pp. 26–30.
7. Nagibina N. B. Interferentsiya i difraktsiya sveta [Light interference and diffraction]. Leningrad: Mashinostroenie, 1985, 332 p.
8. Zaytsev S. V., Gerasimenko Yu. V., Saltykov S. N., Khoviv D. A., Khoviv A. M. Neorganicheskie materialy [Non-organic materials]. 2011, vol. 47, no. 4, pp. 468–472.
9. Krotova G. D., Dubrovin V. Yu., Titov V. A., Shikova T. G. Tekhnologiya materialov i izdeliy elektronnoy tekhniki: lab. praktikum [Technology of materials and devices of electronic engineering: laboratory work]. Ivanovo: GOU VPO Ivan. gos. khim.-tekhnol. un-t., 2007, 156 p.
10. Kerkache L., Layadi A., Dogheche E., Remiens D. J. Phys. D: Appl. Phys. 2006, no. 39, pp. 184–189.
11. Manifacier J. C., Gasiot J., Fillard J. P. J. Phys. E: Sci. Instrum. 1976, vol. 9, pp. 1002–1004.
12. Swanepoel R. J. Phys. E: Sci. Instrum. 1983, vol. 16, pp. 1214–1222.
13. Brus V. V., Solovan M. N., Maystruk E. V., Kozyarskiy I. P., Mar'yanchuk P. D., Ul'yanitskiy K. S., Rappich J. Fizika tverdogo tela [Solid state physics]. 2014, vol. 56, iss. 10, pp. 1886–1890.
14. Kondrashin V. I., Raksha S. V., Shikin M.Yu.Molodoy uchenyy[The young scientist].2014,no.6,pp.169–173.
15. Stockett M. Optical properties of thin transparent conducting oxide films on glass for photovoltaic applications. Available at: http://new.oberlin.edu/arts-and-sciences/departments/physics/documents/projects/ honors/Stockett_thesis.pdf
16. Poelman D., Smet P. F. J. Phys. D: Appl. Phys. 2003, vol. 36, pp. 1850–1857.
17. Askochenskiy A. A. Opticheskie materialy dlya infrakrasnoy tekhniki [Optical materials for infrared equipment]. Moscow: Nauka, 1995, 310 p.

 

Дата создания: 30.09.2016 08:52
Дата обновления: 30.09.2016 11:01